Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Clinics ; 77: 100119, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1404319

ABSTRACT

Abstract Objectives: This study sought to further verify the protective mechanism of Melatonin (MT) against ovarian damage through animal model experiments and to lay a theoretical and experimental foundation for exploring new approaches for ovarian damage treatment. Method: The wet weight and ovarian index of rat ovaries were weighted, and the morphology of ovarian tissues and the number of follicles in the pathological sections of collected ovarian tissues were recorded. And the serum sex hormone levels, the key proteins of the autophagy pathway (PI3K, AKT, mTOR, LC3II, LC3I, and Agt5) in rat ovarian tissues, as well as the viability and mortality of ovarian granulosa cells in each group were measured by ELISA, western blotting, CCK8 kit and LDH kit, respectively. Results: The results showed that MT increased ovarian weight and improved the ovarian index in ovarian damage rats. Also, MT could improve autophagy-induced ovarian tissue injury, increase the number of primordial follicles, primary follicles, and sinus follicles, and decrease the number of atretic follicles. Furthermore, MT upregulated serum AMH, INH-B, and E2 levels downregulated serum FSH and LH levels in ovarian damage rats and activated the PI3K/AKT/mTOR signaling pathway. Besides, MT inhibited autophagic apoptosis of ovarian granulosa cells and repressed the expression of key proteins in the autophagic pathway and reduced the expression levels of Agt5 and LC3II/I. Conclusions: MT inhibits granulosa cell autophagy by activating the PI3K/Akt/mTOR signaling pathway, thereby exerting a protective effect against ovarian damage.

2.
Journal of Pharmaceutical Practice ; (6): 533-538, 2020.
Article in Chinese | WPRIM | ID: wpr-829958

ABSTRACT

Objective To evaluate the genetic toxicity of Wentilactone A. Methods The classical genotoxicity test combination (Ames test, in vitro CHO cell chromosome aberration test and mouse bone marrow micronucleus test) was used to detect the genotoxicity of Wentilactone A. Results Ames test suggested that Wentilactone A was not mutagenic against Salmonella typhimurium with or without the metabolic activation system (S9) at five doses of 5 000, 500, 50, 5, and 0.5 μg/dish. CHO cell chromosome aberration test suggested that the CHO cells cultured in 4 h and 24 h did not induce chromosomal aberrations in three dose groups at the final concentration of 23.74, 47.48, 94.96 μg/ml, with and without S9. The mouse bone marrow micronucleus test showed no significant difference in the bone marrow micronucleus induction rate of cells at three doses of 100, 200, and 400 mg/kg treated for 24 h and at dose of 400 mg/kg treated for 48 h compared with the solvent control group (P>0.05). Conclusion These results indicated that Wentilactone A did not exhibit genetic toxicity based on the Ames test, CHO chromosomal aberration test and micronucleus assay. It was suggested that Wentilactone A had no genetic toxicity and potential carcinogenicity.

3.
Journal of Pharmaceutical Practice ; (6): 451-457, 2020.
Article in Chinese | WPRIM | ID: wpr-825624

ABSTRACT

Objective To evaluate the developmental toxicity and genotoxicity of leonurine. Methods Leonurine was given orally to SD pregnant rats on the 6th to 15th day of pregnancy at the dose of 500, 1 000 and 2 000 mg/kg body weight. The control group received 0.5% CMC-Na solution orally. Pregnant rats were sacrificed on the 20th day of pregnancy to analyze the reproductive toxicity. Ames test, in vitro chromosomal aberration test of CHO cell and in vivo micronucleus assay were performed to investigate the genotoxicity of leonurine. Results There was no difference statistically in weight gain of pregnant mice between two groups at the dose of 500, 1 000 and 2 000 mg/kg of motherwort alkaloids. In vitro CHO cell chromosomal aberration test indicated that there was no statistical difference between leonurine groups (doses of 250, 500 and 1 000 μg/ml) and the solvent control group with and without metabolic activation system S9. The number of micronuclei in ICR mice did not increase (P>0.05) in the mouse bone marrow micronucleus test at the doses of 100, 500 and 2 000 mg/kg. Conclusion No significant maternal toxicity, embryo toxicity, fetal toxicity and teratogenic effects were observed with leonurine at 500, 1 000 and 2 000 mg/kg doses. Leonurine was not genotoxic in Salmonella typhimurium reverse mutation test, in vitro CHO cells chromosome aberration test or mouse bone marrow micronucleus test. It showed that leonurine had no developmental toxicity and genotoxicity under the conditions of the experiment.

SELECTION OF CITATIONS
SEARCH DETAIL